ON CHARACTER DEGREES OF FINITE GROUPS AND

SOME ASSOCIATED GRAPHS

Nour ALNAJJARINE, Roghayeh HAFEZIEH

Department of Mathematics

nalnajjarine@gtu.edu.tr, roghayeh@gtu.edu.tr

Gebze Teknik Üniversitesi Fen Bilimleri Enstitüsü, Lisansüstü Araştırmalar Sempozyumu & Tanıtım Günleri, 14-16 Mayıs 2018

Abstract

We present some interesting results that reflect the strong interplay between the structure of a finite group *G* and the properties of some graphs associated with its character degree set.

Preliminaries in Group Theory

Definition:

Let G be a finite group and V be a vector space over \mathbb{C} , such that $dim_{\mathbb{C}}(V) = n$. A representation of G in V of degree n is a homomorphism of groups $\rho: G \longrightarrow GL(V) \cong GL(n, \mathbb{C})$. It is called irreducible if and only if *V* has no nontrivial invariant subspaces.

The character of G associated with ρ is the mapping $\chi: G \longrightarrow \mathbb{C}$ where $\chi(g) = tr(\rho(g))$. A character of G is called irreducible if and only if ρ is irreducible. The set of all irreducible characters of *G* is denoted by Irr(G).

If $H \subseteq G$, $\theta \in Irr(H)$ and $g \in G$, we define $\theta^g : H \longrightarrow \mathbb{C}$ by $\theta^g(h) = \theta(ghg^{-1})$, we have $\theta^g \in Irr(H)$ and $I_G(\theta) = \{g \in G : \theta^g = \theta\}.$

Definition:

A subnormal series of *G* is a finite chain of subgroups of *G*:

$$G_0 = \{1_G\} \leq G_1 \leq \cdots \leq G_r = G$$

where $G_{i-1} ext{ } ext{$\leq$ } G_i$ for every $1 ext{$\leq$ } i ext{\leq } r$.

If G_i/G_{i-1} is abelian for every $1 \le i \le r$, then G is solvable and the length of the shortest subnormal series of G verifying this property is called the derived length of G and it is denoted by dl(G).

Definition:

A solvable radical of a group *G* is the largest solvable normal subgroup of *G* .

Definition:

A Hall subgroup H of a group G is a subgroup whose order is relatively prime with its index.

Definition:

A group *G* is said to be simple if and only if it has no proper normal subgroups.

Definition:

A group *G* is an almost simple group if and only if there exists a simple nonabelian group S such that $S \leq G \leq Aut(S)$. In this case, we say that G is an almost simple group with socle S.

Preliminaries in Graph Theory

Definitions:

- 1. A graph Ω is an ordered pair $(V(\Omega), E(\Omega))$, where $V(\Omega)$ is a vertex set, $E(\Omega)$ is an edge set and each edge is associated with two vertices.
- 2. A walk on Ω is an alternating sequence of vertices and edges: $v_0, e_1, v_1, \cdots, e_k, v_k$ such that v_{i-1} and v_i are the endpoints of the edge e_i for all $1 \le i \le k$. The length of a walk is defined to be the number of its edges.
- 3. A path of length n, P_n , is a walk where all vertices are distinct.
- 4. A cycle of length n, C_n , is a walk where $v_0 = v_k$ and all other vertices are distinct.
- 5. A graph Ω is connected if for all $u \neq v \in V(\Omega)$ there exists a u, v-path (a path whose endpoints are u and v). Otherwise we say that Ω is disconnected. In this case, we define the connected components of Ω to be its maximal connected subgraphs, and we denote by $n(\Omega)$ the number of such components. If Ω is connected, then, $diam(\Omega) = Max\{d_{\Omega}(u, v) : u, v \in \Omega\}$, where $d_{\Omega}(u, v)$ is the length of the shortest u, v - path.

Basic Definitions and Theorems

Definition:

Let *G* be a finite group. Consider the set of irreducible complex characters of G, Irr(G), and define $cd(G) = \{\chi(1): \chi \in Irr(G)\}.$ Let $\rho(G)$ be the set of all primes which divide some character degrees of *G* .

- \triangleright The prime degree graph, $\Delta(G)$, is the graph whose vertex set is $\rho(G)$ and there is an edge between two primes p and q in $\rho(G)$ if and only if pq divides some degree in cd(G).
- \triangleright The common divisor degree graph, $\Gamma(G)$, is the graph whose vertex set is $cd(G)^* = cd(G) \setminus \{1\}$ and there is an edge between two characters m and n if and only if $gcd(m, n) \neq 1$.

 \triangleright The bipartite divisor graph, B(G), is the graph whose vertex set is $\rho(G) \cup cd(G)^*$ and there is an edge between $p \in \rho(G)$ and m $\in cd(G)^*$ if and only if p|m.

These graphs are strongly related graphs, in particular, they have the same number of connected components.

Theorem:

For any finite group G, we have $n(\Delta(G)) \leq 3$. If G is solvable, then $n(\Delta(G)) \leq 2$.

Theorem:

There is no solvable group G whose $\Delta(G)$ is a P_3 or a C_4 .

Theorem:

There is no nonsolvable group G whose $\Delta(G)$ is a P_3 .

Theorem:

Let G be a nonsolvable group such that $|cd(G)^*| = 4$. Then $\Gamma(G)$ is one of the graphs listed in Figures 1 and 2.

Theorem:

Let G be a finite group such that $\Delta(G)$ has no triangles $(C_3$'s). Then, $|\rho(G)| \leq 5.$

Let G be a finite group such that $\Delta(G)$ has five vertices and no triangles, then the following hold:

- 1. If $\Delta(G)$ is disconnected, then $G \cong PSL(2, 2^f) \times A$, where A is abelian, $|\pi(2^f \pm 1)| = 2$ and $\Delta(G)$ is the second graph in Figure 3.
- 2. If $\Delta(G)$ is connected, then $G = H \times K$, where $H \cong A_5$ or PSL(2,8), K is a solvable group such that $\Delta(K)$ has exactly two vertices and two connected components and $\rho(H) \cap \rho(K) = \emptyset$. Furthermore, $\Delta(G)$ is the first graph in Figure 3.

Result 1

Theorem:

Let G be a finite group. Then $diam(B(G)) \leq 7$ and this bound is sharp.

Theorem:

Let G be a finite group such that $B(G) = P_n$ for some positive integer n. Then, $n \leq 6$, G is solvable and $dl(G) \leq 5$.

Example:

Consider $G = S_3 \times A_4$. We have: $cd(S_3) = \{1,2\}, cd(A_4) = \{1,3\} \text{ and } cd(G) = \{1,2,3,6\}.$ Moreover, G is solvable as S_3 and A_4 are so.

Result 2

Lemma:

Let S be a nonabelian simple group. Then B(S) is disconnected and all its connected components are paths if and only if S is isomorphic to one of the following groups:

i. $PSL(2, 2^n)$ where $|\pi(2^n \pm 1)| \le 2$;

ii. $PSL(2, p^n)$ where p is an odd prime and $|\pi(p^n \pm 1)| \le 2$.

Lemma:

If G is a finite group whose B(G) is a union of paths and $|\rho(G)| = 5$, then $G \cong PSL(2,2^n) \times A$, where A is abelian and $|\pi(2^n \pm 1)| = 2$.

Theorem:

Let *G* be a finite nonsolvabe group and let *N* be the solvable radical of G. If B(G) is a union of paths, then B(G) is disconnected and there exists a normal subgroup M of G such that G/N is an almost simple group with socle M/N. Furthermore, $\rho(G) = \rho(M)$ and we have one of the following cases:

1) If n(B(G)) = 2, then |cd(G)| = 5 or |cd(G)| = 4, $G/N \in \{PGL(2,q), M_{10}\}$, for q > 3 odd, and either $cd(G) = \{1, q - 1, q, q + 1\} \text{ or } cd(G) = \{1, 9, 10, 16\}.$ Let C_1 and C_2 be the connected components of B(G). Then C_1 is a path of length one and $C_2 \cong P_n$ where $n \in \{|\rho(G)|, |\rho(G)| + 1\}$.

2) If n(B(G)) = 3, then $G \cong PSL(2, 2^n) \times A$, where A is an abelian group and $n \ge 2$.

Example:

Let G = PSL(2,25). Then $cd(G) = \{1, 13, 24, 25, 26\}$. Thus B(G) is the union of the following two paths:

$$C_1: 5-25$$
, and

$$C_2: 13-13-26-2-24-3.$$

Result 3

Lemma:

Let G be a finite group whose B(G) is a cycle of length $n \geq 6$. Then, $\Delta(G)$ and $\Gamma(G)$ are both cycles.

Theorem:

If G is a finite group whose B(G) is a cycle of length n. Then, $n \in \{4, 6\}$

Corollary:

If G is a finite group whose B(G) is a cycle, then G is solvable and $dl(G) \le |cd(G)| \le 4.$

Theorem:

Let G be a finite group such that B(G) is a cycle of length four. Then there exists a normal abelian Hall subgroup N of G such that $cd(G) = \{ |G: I_G(\lambda)| : \lambda \in Irr(N) \}.$

Example:

Consider the two nonabelian groups among the sixty six groups of order 588. The bipartite divisor graph of these two groups is C_4 , precisely, these groups have {1, 6, 12} as their irreducible character degree set. Remark that any group of order 588 is solvable.

Interesting Questions

Question 1:

Is there is any solvable group G whose B(G) is a path of length four such that |cd(G)| = 4?

Question 2:

Is there is any solvable group G whose B(G) is a P_5 or a P_6 ?

References

[1] Hafezieh R., (2017), "Bipartite divisor graph for the set of irreducible character degrees", International Journal of Group Theory, 6 (4), 41-51.

[2] LiGuo H., GuoHua Q., (2015), "Graphs of nonsolvable groups with four degree-vertices", Sci. China Math., 58 (6), 1305–1310.

[3] Lewis M., White D., (2013), "Four-vertex degree graphs of nonsolvable groups", J. Algebra, 378, 1–11.

[4] Lewis M., (2008), "An overview of graphs associated with character degrees and conjugacy class sizes in finite groups", Rocky Mountain J. Math., 38 (1), 175–211.

[5] Tong-Viet H. P., (2013), "Groups whose prime graph has no triangles", J. Algebra, 378, 196-206.

Contact Information

Nour Alnajjarine Department of Mathematics, Gebze Technical University E-mail: nalnajjarine@gtu.edu.tr